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Characterizing the habitat associated with predation events can inform on predator-prey

dynamics. Despite being evaluated extensively in terrestrial systems, quantifying and

characterizing the role predation plays in upper trophic marine ecosystems is challenging

due to the cryptic nature of pelagic predators and the difficulty of observing predatory

behavior. We developed a multi-step method to characterize habitat associated with

predation that integrates data from post-mortem pop-up style mortality transmitters,

and data from traditional external tracking devices, both of which use the Argos satellite

system. In our case study with juvenile Steller sea lions (SSL, Eumetopias jubatus) in the

Gulf of Alaska, 20 mortality events were previously described, of which 18 were attributed

to predation. The locations of 13 of these at-sea predation events with post-mortem

tracking data were estimated, with spatial uncertainty calculated using movement-based

approaches of backwards step-length and state-space modeling. We then generated a

Mortality Occurrence Probability Distribution (MOPD), resampled points within the MOPD

based on isopleth weighting, and extracted habitat variables (i.e., slope, depth, distance

to haulout-rookery) associated with these locations. This final dataset represented “case”

points (n = 115) in terms of predation and was compared to the habitat associated

with “control” points (n = 1000), locations within juvenile SSL distribution in this region

(i.e., population home range), in a resource-selection function (GAM). Predation events

were associated with habitats characterized by greater depths and moderate distances

from SSL haulouts and rookeries. This information enabled us to generate a risk-map for

juvenile SSL in the Gulf of Alaska, spatially representing areas of high predation probability.

Our study provides important information about threats to this vulnerable age-class, and

establishes a novel approach to characterizing risk in marine ecosystems that can be

applied to other management and ecosystem concerns.
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INTRODUCTION

Predation is one of the primary risks animals must balance
when acquiring resources (Lima and Dill, 1990). A landscape of
fear conceptual model represents the spatial extent and relative
strength of predation risk that animals perceive throughout
their environment (Laundré et al., 2001; Bleicher, 2017), and
can be used to explore the consumptive and non-consumptive
effects of predation on populations and ecosystems (Lone et al.,
2014). Predation risk can be directly quantified by investigating
mortality locations, e.g., kill sites, within a landscape (Lone
et al., 2014; Lendrum et al., 2017; Rayl et al., 2018). These
locations can then be assessed relative to habitat type, temporal-
scale (e.g., season or diel patterns), and anthropogenic features
in order to better understand the mediating factors associated
with the consumptive effects of predation (Lone et al., 2014;
Hammerschlag et al., 2015; Bleicher, 2017; Lendrum et al.,
2017; Kohl et al., 2018). For example, a study investigating the
mortality sites of roe deer, Capreolus capreolus, found that risk
of predation from lynx, Lynx lynx, and risk of human hunting
mortality shared divergent relationships with habitat cover (Lone
et al., 2014). Such interactions between species, habitat, and
consumptive predation risk can inform our understanding of
population trajectories (Horning and Mellish, 2012), trophic
cascades (Ripple et al., 2016), or the response of ecosystems to
rapidly changing environmental conditions.

Direct observations of mortality can be challenging in large-
scale, dynamic, and fluid systems such as the open ocean due
to the cryptic nature of pelagic predators and the difficulty
associated with directly observing predatory behavior (Hooker
et al., 2007; Horning and Mellish, 2014; Hammerschlag et al.,
2015; Hussey et al., 2015). Instead, predation risk in marine
systems is derived in terms of non-consumptive effects, through
indirect measures of behavioral changes and changes in space
use for prey, relative to predator distributions or space-use
(Wirsing et al., 2008; Hammerschlag et al., 2015; Breed et al.,
2017). However, with the development of novel biotelemetry
devices, recent efforts have begun to address consumptive
predator-prey dynamics in marine ecosystems (Horning and
Mellish, 2012, 2014; Bishop et al., 2019; Seitz et al., 2019).
Internal VHF devices and mark-recapture efforts have been
used to successfully monitor survival of marine animals for
periods beyond 1 year, but detection range, regional coverage,
and determination of mortality locations are still limited using
these methods (Horning and Hill, 2005). To overcome these
limitations, external and implantable satellite tags have been
developed that utilize collected sensor data (e.g., light levels,
temperature, depth changes) to detect mortalities (Horning
and Hill, 2005; Horodysky and Graves, 2005; Nielsen et al.,
2018). Following a mortality detection, external tags can be
programmed to detach, float to the sea-surface, and transmit
data through global satellite systems (Kerstetter et al., 2003; Seitz
et al., 2019). Internally implanted tags, such as the Life History
Transmitters (LHX), also transmit previously stored information
via satellite post-mortem, after the positively buoyant tags are
liberated from decomposing, digested or dismembered carcasses
through violent or decomposition processes (Horning and Hill,

2005; Horning and Mellish, 2009). In some cases, tag sensor data
can be used to differentiate mortality due to predation (Horning
and Mellish, 2009, 2012), and to identify cases of predation
from specific predator species (Horning and Mellish, 2014).
Backtracked data from post mortem ARGOS satellite locations
can also be used to estimate the site of a predation event (Brown
et al., 2019), providing spatially explicit predation data that has
previously been considered “empirically intractable” (Williams
et al., 2004).

Here, our objective was to develop a novel method that
integrates data from these multiple, advanced technologies
to quantify spatially explicit direct predation risk in marine
ecosystems relative to habitat features, while accounting for
the varying degrees of spatio-temporal uncertainty associated
with predation event location data in marine environments
(Figure 1).We present a case-study exploring the habitat features
associated with direct predation risk by apex predators on an
upper trophic level marine meso-predator, the juvenile Steller sea
lion (SSL, Eumetopias jubatus).

METHODS

Animal Capture and Tagging
Over the past 40 years, the endangered, western population
segment (west of 144◦ W) of the SSL has declined to ∼20% of
peak population levels documented in the 1970s. It has been
posited that the lack of recovery in the western population
segment is associated with the quality (Fritz and Hinckley,
2005) and availability of food resources (Holmes et al., 2007),
changing ocean conditions (Trites et al., 2007), and increased
predation pressure (Springer et al., 2003; Horning and Mellish,
2012). As part of large-scale efforts to tease apart the effects
of predation on this species, from 2003 to 2014, seventy SSLs
(male n = 41, female n = 29) between 13 and 25 months
of age were captured in Prince William Sound (60◦ N 148◦

W) and Resurrection Bay, Alaska (60◦ N 149.30◦ W). The
animals were transported to the Alaska SeaLife Center (ASLC)
after capture, and 45 animals (male n = 28, female n = 17)
underwent surgical implantation of LHX tags between 2005
and 2014 (Horning et al., 2008). Detailed information on
capture, handling, biosampling and instrumentation techniques
are described in detail in (Mellish et al., 2006, 2007; Horning
et al., 2008, 2017a; Thompton et al., 2008). All animals were
subsequently released in Resurrection Bay with external Satellite
Data Recorders (SDRs, Wildlife Computers, Redmond, WA)
following 1-6 weeks of postoperative monitoring in captivity
under veterinary care. LHX tag implantation and temporary
captivity was found to have no significant effect on animal diving
behavior post-release (Mellish et al., 2007; Thompton et al.,
2008) and there was no evidence of reduced post-release survival
through the age of five years due to LHX implantation surgery or
temporary captivity (Shuert et al., 2015).

Estimating Mortality Events Locations
Mortality events were detected through state transitions in
the LHX tags, indicating temperatures outside a user-defined
physiological temperature range (i.e., first state transition;

Frontiers in Marine Science | www.frontiersin.org 2 October 2020 | Volume 7 | Article 576716

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


www.manaraa.com

Bishop et al. Steller Sea Lion Risk Modeling

FIGURE 1 | General work-flow for developing a spatially explicit risk map of predation for marine top predators. Inputs into the workflow include Argos location data

from pop-up transmitters (e.g., LHX tags, miniPATs) and external Satellite Data Recorders (SDRs). This approach captures the uncertainty of emergence location for

mortality events (A,B) and incorporates it into the determination of case and control points used in subsequent habitat modeling of risk (C,D). Steps were conducted

in program R, ArcGIS, and Geospatial Modeling Environment (GME v0.7.2.0).

Horning and Hill, 2005). An acute death (e.g., dismemberment)
such as an attack by a predator leads to: (1) the immediate
extrusion of implanted tags and rapid cooling in the ambient
medium or; (2) the tag getting lodged andmore gradually cooling
within chunks of smaller body parts (Horning andMellish, 2009).
A non-traumatic event other than predation should lead to algor
mortis (slow cooling of an intact body) and delayed tag extrusion
after the body slowly decomposes (Horning and Mellish, 2009).
Date and time of death is therefore determined, stored and later
transmitted with a 30min resolution following a second state
transition (i.e., sensing of light and air) indicating tag extrusion.

Once a tag emerges from the body of a deceased animal
and senses light and air, satellite transmissions are initiated
within 24 h. Transmitted data include body temperature and
light data, and a mortality date/timestamp. Locations are not
included in the data stream, as LHX tags have no means to
calculate their position. Instead, the Argos system calculates
geographic location estimates from the Doppler frequency shift
across multiple sequential transmissions received during a single
satellite pass. Individual location estimates are assigned an

accuracy in the form of one of 7 location classes (LC 3, 2, 1,
0, A, B, and Z), ranging from <150m (LC 3) to > 1.5 km
(LC B), and class Z has no accuracy assigned (Hays et al.,
2001). To maximize the probability of the return of at least
some transmissions, tags were programmed to only commence
transmissions at 12:00 noon Alaska Standard Time. This could
introduce a varying delay between the second state transition and
onset of transmissions of 1–24 h. Since tags can drift considerably
during this time between transmissions, the accuracy of the
estimated mortality location may decrease with delayed uplinks.
Additionally, multiple successful uplinks within a single satellite
pass are required to improve location accuracy which may not
be immediately attainable in rough or choppy surface conditions
and can further delay tag location estimates post-mortem.

Out of the 45 LHX tagged animals, 20 mortalities were
detected between November 2005-December 2018 (Horning and
Mellish, 2014; Horning et al., 2017b; Bishop et al., 2019). Two of
the detected mortalities yielded insufficient data to determine the
proximate cause of mortality and were excluded from analysis.
The remaining 18 individual mortalities were characterized as
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TABLE 1 | Descriptions of predation events detected via Life History (LHX) tags

for each juvenile Steller sea lion.

ID Sex Days alive

post-release

Date of death Hrs delay Method

TJ33 M 124 2/11/2008 23 bSSM

TJ35 F 221 5/18/2008 115 steplength

TJ44 M 361 11/7/2009 25 steplength

TJ46 M 421 1/6/2010 8 bSSM

TJ47 F 67 1/17/2009 3 bSSM

TJ54 M 294 5/12/2010 89 steplength

TJ57 M 307 9/27/2011 6 bSSM

TJ58 M 81 2/12/2011 24 steplength

TJ59 M 431 1/28/2012 7 bSSM

TJ62 F 624 3/15/2013 24 steplength

TJ63 M 163 12/2/2011 22 bSSM

TJ64 F 165 12/4/2011 120 steplength

LHX2-07 F 410 6/28/2015 15 bSSM

Depending on the Hrs Delay (hours between time of death, and the first Argos location

estimate), two different calculation methods were used: state-space models run in reverse

(bSSM), or average of drifting distances (steplength), see section Methods for details.

predation (Horning and Mellish, 2014). We found that the lag
between tag extrusion and the first calculated location estimate
ranged from 1 h to several days. Five of these 18 individuals had
spatial event data associated with very large uncertainties due to
delayed uplinks (> 5 days) to the ARGOS satellite system after
extrusion (Brown et al., 2019). These events were excluded from
our spatial analysis (Table 1).

LHX Tag Location Processing
To estimate the actual emergence location (coinciding in time
with the mortality event), we applied a modified, continuous-
time state-space model (SSM) in the R (v3.4.0) package crawl
(Johnson et al., 2008) to all available post-emergence location
data. The standard crawl models use Bayesian filters to estimate
the current location conditional on preceding locations (Särkkä,
2013), which improves output accuracy as all available data are
utilized. Here, we ran the model in reverse to use all available
post-emergence spatial and location quality information. The
final location obtained was reassigned as the first location for the
model, and all subsequent steps were backtracked in time, such
that, the first actual location estimate obtained by Argos was used
as the last location in the model. The development and validation
of this backward-SSM (bSSM) approach is described in detail in
Brown et al. (2019).

Model output was then further generated backwards to the
time of tag emergence, to extrapolate an emergence location
(Brown et al., 2019). This process was repeated 500 times
generating 500 emergence locations/tag (Figure 2A). To account
for locations on land, we ran the estimated emergence locations
through {fixpath} in crawl, a function which moves points
on land to the closest sea location along the path trajectory
(Johnson et al., 2008). Brown et al. (2019) found that accuracy of
extrapolated emergence locations substantially decreased using

the backwards SSM approach when the time lag between
emergence and first Argos location estimates was > 24 h.
Thus, we only used the backward SSM approach for tags
(n = 7, Table 1) that yielded an Argos location within 24 h
from emergence. For tags with location delays > 24 h (n =

6, Table 1), we used an alternate approach. We averaged the
distance between consecutive locations for the entire time the
tag was transmitting at the surface to estimate an average drifting
distance (steplength). We then applied that average drift distance
to the first quality emergence location (LC 2-3) to create a
buffer surrounding that location (Figure 2B). We assumed that
the predation event occurred within that buffered area, and 500
points were randomly generated within each polygon.

Generating Case/Control Locations for
Habitat Modeling
Because the output locations from the extrapolated, bSSMs and
within the steplength buffers are equally weighted regardless of
uncertainty, we used a multi-step process for extracting habitat
feature data associated with predation events that maximized
the use of available data from known predation locations, and
incorporated the variation in the spatial uncertainty (Figure 1).
First, in ArcGIS 10.6 (ESRI), we merged the estimated emergence
locations that were output from each of the SMMs and the
randomly generated points within each step-length buffer (n =

6500). We used a fixed kernel density estimator (kde) with cross
validation bandwidth (1 km × 1 km) to generate a Mortality
Occurrence Probability Distribution (MOPD) in Geospatial
Modeling Environment v 0.7.2.0. The MOPD represented the
case space, or the space where predation events most likely
occurred. To extract habitat data associated with case space, we
first calculated the area in each isopleth (0.10–0.95, Table 2).
Then, starting with a density of 5 case-locations per km2 in
the 0.10 isopleth, we distributed points (randomized spatially in
ArcGIS) in each subsequent isopleth so that the resulting density
was in proportion with the isopleth’s associated probability
(Table 2). This resulted in a dataset of 115 case/mortality
locations. To generate comparable control locations, or locations
describing habitat juvenile SSLs utilize while alive, we applied the
same density-weighting approach to generate points across the
juvenile SSL Utilization Distribution (UD) published in Bishop
et al. (2018) generated from satellite movement tracking data
locations in this region (n= 84) during the same temporal period.
This resulted in a dataset of 1,000 control locations (Table 2).

Generating Spatially-Explicit Risk Map
We used generalized additive models (GAMs) to predict the
probability of predation spatially, relative to static habitat
features. The GAM was fit using a binomial distribution with a
logit link function and residual maximum-likelihood estimator
with themgcv package (Wood, 2006) in R (v.3.5.3). We restricted
the number of knots (k= 5) to avoid overfitting. We used a case-
control design to predict the relative probability of a predation
location (1) compared to locations randomly generated within
the full extent of the SSL population UD (0). Using standard tools
in ArcGIS, we extracted several environmental covariates at each
case and control location to depict variation in risk across our
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FIGURE 2 | Two examples of mortality location and uncertainty estimation methods. (A) For data with < 24 h uplink delay, state-space model simulations were run in

reverse (bSSM), utilizing all available Argos location estimates post-emergence to generate a predicted emergence (predation) location. For each observed predation

event, 500 bSSM simulations were run, resulting in 500 predation location estimates. A subset of LHX2_07’s bSSM simulation tracks are shown here (n = 100), with

estimated predation locations clustered around the Chiswell Islands. (B) For data with > 24hr uplink delay, a step-length calculation generated a buffer around the

emergence location within which predation was estimated to have occurred. The first emergence location for TJ44, and estimated predation location buffer in Prince

William Sound are shown.

TABLE 2 | The area (km2 ) and number of points generated per isopleth in the

Case mortality occurrence probability distribution and Control utilization

distribution based on a starting density of 5 points per km2, with subsequent

weighting proportionate to the isopleth’s associated probability.

Isopleth Case area # of Case pts Control area # of Control pts

10 4.15 21 36.10 181

20 37.03 19 124.71 162

30 95.04 17 224.29 144

40 191.89 15 383.47 126

50 302.30 12 626.77 108

60 399.76 10 883.13 90

70 859.26 8 1565.50 72

80 2248.10 6 2213.70 54

90 5053.20 4 3749.40 36

95 4040.20 3 2244.60 27

study area, including depth (m) and bathymetric-slope (degrees)
(Lim et al., 2011), and distance to known SSL haulouts (km, Fritz
et al., 2015) (Figure 3). Depth may represent predator-specific
predation risk since transient killer whales, one of the primary
hypothesized predators of SSL (Loughlin and York, 2000), hunts
near the surface, while predation by Pacific sleeper sharks
(Somniosus pacificus), another hypothesized predator (Loughlin

and York, 2000; Frid et al., 2009; Horning and Mellish, 2014) is
predicted to be very low near the ocean surface but increase in
probability with depth (Frid et al., 2009). We used bathymetric
slope as a proxy for gradient in depth and biomass production
(Aydin et al., 2002). Depth and bathymetric slope can influence
foraging decisions (Baylis et al., 2015) and spatial distribution of
sea lions (Aarts and Brasseur, 2008) and can be used as a proxy
for risk-reward tradeoffs. Distance to known SSL haulouts (Fritz
et al., 2015) was used as a surrogate for perceived low-risk habitat.

Potential models were assessed based on weighted Akaike
Information Criterion (AIC), in addition to area under the curve
(AUC) cross-validation statistics. AUC statistics are calculated
from receiver operating characteristic (ROC) curves which use
the inflection point to maximize the true positive rate, while
minimizing the false-positive rate (DeLong et al., 1988). We
calculated ROC curves and AUC statistics using the ROCR
package in R (1.0-7). The spatial distribution of predation risk
was visualized in ArcMap using the best model, with spatial
extent constrained to the observed SSL control dataset.

RESULTS

Spatial Distribution of Mortality Events
Predation events occurred across the Gulf of Alaska, including
Prince William Sound, the Kenai Fjords region, lower Cook Inlet
and west of Kodiak Island (Figure 4A). Of the 13 events analyzed

Frontiers in Marine Science | www.frontiersin.org 5 October 2020 | Volume 7 | Article 576716

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


www.manaraa.com

Bishop et al. Steller Sea Lion Risk Modeling

FIGURE 3 | Habitat variables included as predictors of predation in our study

area, the Gulf of Alaska: (A) distance to Steller sea lion haulout or rookery (km;

haulouts/rookeries denoted as black points; Fritz et al., 2015), (B) depth (m),

and (C) slope derived from bathymetry (Lim et al., 2011).

here, the time between mortality and first computed locations
obtained via satellite uplinks ranged from 3 to 120 h (Table 1).
Areas of bSSM-derived uncertainty polygons ranged from (0.27–
3729.77 km2), and the areas of steplength derived uncertainty
polygons ranged from (170.13–9245.73 km2). When combined
into a MOPD, the 10–95% isopleths for the case/mortalities
combined covered a total area of 13,230.9 km2 (Table 2,
Figures 4A,B). The control UD (Bishop et al., 2018) covered
a similar area, 12,051.6 km2 (Table 2, Figures 4C,D). The
proportion of high probability areas, isopleths 10–50%, was
greater for the control UD (11.6%) relative to the case
MOPD (4.7%).

Spatial Prediction of Risk
The model with the highest empirical support relating the
probability of predation to habitat features included all variables
considered: depth, slope, distance to haulout (Table 3). Slope
and distance to SSL haulout variables were characterized by
non-linear relationships (Table 3, Figure 5). Our final GAM
showed predation was less likely to occur for slope values
between 2 and 10◦ than for steeper slopes (Figure 5). As
distance from SSL haulouts increased (0–20 km) predation
likelihood increased, but then decreased at intermediate distances
from SSL haulouts (40–80 km). Predation likelihood increased

FIGURE 4 | (A) The mortality occurrence probability distribution, and (B) the

generated case locations (n = 100) from which habitat features were

extracted. (C) The control utilization distributions from Bishop et al. (2018), and

(D) the generated control locations (n = 1,000), from which habitat features

were extracted.

linearly in areas with deeper bathymetry, but so did model
uncertainty (Figure 5). Based on the AUC score of the finalmodel
(0.74, Supplemental Figure 1), model accuracy was good in the
predictions of the spatial distribution of predation risk for Steller
sea lions (Table 3, Figure 6).

DISCUSSION

The approach we introduce here allows the integration of
spatially explicit data from multiple telemetry and remote
sensing sources with differing degrees of spatio-temporal
uncertainty. Furthermore, this process incorporates quantitative
estimates of uncertainty that are based on actual data collected
through individual telemetry devices. Through our novel
approach, spatially explicit risk maps can be generated through
association between predation locations and static habitat
features (Figure 1). Our case study, utilizing predation events
of juvenile SSLs (n = 13) in the Gulf of Alaska, highlights the
effectiveness of this method to explore habitat features associated
with direct predation risk. We found evidence that juvenile SSL
predation events were associated with habitats characterized by
greater depths and moderate distances from rookeries.
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TABLE 3 | Top three candidate model summaries estimated by generalized

additive models predicting probability of predation including Akaike Information

Criterion (AIC) and area under the curve (AUC) statistics.

Model edf p-value

Model 7

Bathymetry 1.4 <0.001

Slope 3.7 0.039

Distance to haulout 3.9 <0.001

AIC = 673

AUC = 0.74

Model 6

Bathymetry 1.5 <0.001

Distance to haulout 3.9 <0.001

AIC = 678

AUC = 0.72

Model 5

Slope 3.6 0.04

Distance to haulout 3.9 <0.001

AIC = 700

AUC = 0.72

For full model set results see Supplemental Table 1.

Our multi-step process to characterize habitat associated with
predation events maximizes the use of all available telemetry
data; however, there are still some limitations to this system.
LHX tags are the first available technology to detect, locate
and characterize mortality, and specifically in their ability to
identify predation events, in marine homeotherms with spatio-
temporally unrestricted monitoring effort (Horning and Hill,
2005; Horning and Mellish, 2009). These tags were designed
along a hierarchical set of functionalities. The top priority
was given to maximizing post-mortem data return probability,
whereas mortality event location determination was assigned
a low priority. In the Argos telemetry system, locations
are calculated from the Doppler frequency shift of multiple
sequential transmissions received by one receiving satellite
during a single pass—location information is not included
in the transmitted data stream. The quality associated with
a subsequently calculated location is linked to the number
of transmissions received during a single satellite pass. If
transmissions are widely spaced in time, it is also possible to
transmit data without ever obtaining locations. In a simplex
transmission system such as Argos, data need to be transmitted
with a given level of redundancy to achieve a given probability
of being received. To increase the likelihood of obtaining
quality location estimates, the transmit rate should be increased.
However, this could reduce the likelihood of receiving any
transmissions if all occur in a short time under adverse conditions
(e.g., bad sea state). Furthermore, the heuristic algorithm used
to determine tag state and initiate transmissions under optimal
conditions was programmed to evaluate light sensor data only
once per 24 h, which introduced variable delays between time of
death and onset of transmissions. To address these constraints,
LHX tags were designed along a hierarchical set of functionalities.
This was done to maximize the probability of receiving at least
one post-mortem transmission from a tag (sufficient to confirm

death), at the expense of a low probability of an early, higher
quality location.

In addition to the programming limitations imposed by
LHX tags, our case study was limited by sample size. Initial
applications of LHX tags in 45 juvenile SSLs in the Gulf of
Alaska revealed at least 18 of 20 detected mortalities were
attributed to predation, suggesting a proportion of juvenile
sea lion mortalities due to predation in the Kenai Fjords—
Prince William Sound region of 0.917 (95% C.I. 0.78–1.0, as per
Horning and Mellish, 2012, 2014). Due to the aforementioned
programming limitations, we only had location estimates for 13
of these predation events, and spatial uncertainty related to these
events was highly variable. This limited our ability to explore
seasonal patterns or dynamic habitat features of interest, those
likely correlated with resource distribution; although, in most
cases, these features (e.g., sea surface temperature, chlorophyll a)
typically have a spatial resolution that is too low in the higher
latitudes and fjord geography of our study area. Such variables
could easily be incorporated into this method to refine habitat
features associated with risk in other systems, or to explore
seasonal differences in risk from greater sample sizes.

Despite limitations in sample size and a lack of opportunity
to consider dynamic habitat features, some patterns emerged
from the analysis of SSL predation events. The predominant
pattern was that deeper bathymetry was associated with increased
predation risk. However, this effect increased over water depths
well in excess of the median of maximum dive depths of juvenile
SSL (126.1m, Thompton et al., 2008). Without a concurrent
analysis of dive depths from the external transmitters or depth
information associated with mortality events, it seems very
unlikely that sea lions were using the full range of available
bathymetry, and more likely were spending time closer to
the surface over greater depths. Pacific sleeper sharks are a
hypothesized predator of juvenile SSLs with indirect evidence of
predation from analysis of telemetry data (Horning and Mellish,
2014). They are thought to be opportunist predator-scavengers
that spend much time over deeper bathymetry and at depths
beyond median sea lion dive depths (Thompton et al., 2008).
They do however range closer to the surface at night (Hulbert
et al., 2006) where opportunistic encounters with sea lions may
lead to predation.

Distance from rookeries and haulouts had a slight positive
association with predation risk increasing up to 20 km, but at
greater distances the risk diminished again. This finding may
appear to contradict the observation by Bishop et al. (2019) of
slightly elevated predation risk for individuals with increased
haulout times during summer, which must occur near rookeries
and haulouts, even while overall risk was lower in summer
than winter. This disconnect may be due to the differences in
temporal scales across studies. In our current study, sample size
limited exploration of seasonal differences habitats associated
with predation, which may mask the predation risk associated
with sea lion behaviors in the summer. However, summer haulout
behavior is driven by increased social interactions in rookeries
during breeding, and may be concomitant with increased entry
into and exit from water. Thus, while overall time dry may
increase, time spent in the waters near a rookery is likely also
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FIGURE 5 | Partial plots for generalized additive models for predation presence/absence variables. Probability of Predation is on the y-axis and environmental variable

is on the x-axis. Standard error is shaded in gray.

FIGURE 6 | Spatial distribution of predicted predation probability, as estimated from the best generalized additive model based on the relationship to distance to

haulout, bathymetry (depth), and slope. The spatial extent is constrained by habitat (bathymetry and distances from haulouts) juvenile SSLs were associated with* in

control data. *Note, association with bathymetry refers to the specific depth at a SSL movement location, not SSL usage of the vertical water column.

higher, rather than foraging at more distant locations, which
could concentrate sea lions for predators. Previous work has
found that average annual predation by transient killer whales
on SSLs (mainly pups and juveniles) at one rookery in our
study region accounted for 3–7% of the local summer seasonal
population of sea lions (Ford et al., 1998; Maniscalco et al.,
2007). Slope of bathymetry was also associated with predation
risk, which was highest at comparably shallow angles around 2–3
degrees (Figure 5). Most shorelines in the region are steep, and
therefore this effect matches the shape of the distance pattern,
and probably reflects the same root cause.

Overall, between the present study and Bishop et al. (2019),
the observed diving, haulout, spatial and habitat use associated
with resource-risk trade-offs are consistent with a mix of at least

two predator types—transient killer whales and Pacific sleeper
sharks, as proposed and theoretically modeled by Frid et al.
(2009). Interestingly, the observations by Bishop et al. (2019)
that may indirectly suggest closer-to-rookery predation in the
summer were derived primarily from telemetered sea lion dive
behavior data and were informed by predation event timing,
but not location. The positive association of predation risk
with deeper bathymetry, and distance from rookeries we report
here were derived from predation event telemetry timing and
location, and was only spatially constrained by telemetered sea
lion movement. Both reflect consumptive effects, presumably
from a mix of predators, and provide information about the
extrinsic and intrinsic factors associated with risks for juvenile
Steller sea lions. This highlights the complementary nature of
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the two types of telemetry used in this study, external behavioral
tracking tags, and internal, predation detecting.

As marine ecosystems continue to experience rapid changes,
it will be critical to have methods for assessing inter-species
interactions, particularly predator-prey interactions, in order to
evaluate the potential impacts to ecosystem structure. Marine
risk maps, linking habitat to predation probability, could provide
insights into the biological connections in the ecosystem, be
used to develop further hypotheses, or focus observational
effort to spatial and temporal windows that are identified
as being associated with risk. Though explored through a
case-study on juvenile Steller sea lions, the process described
here was designed to be applicable across a range of species
and telemetry types already used in marine systems where
mortality data-sources have a high degree of spatio-temporal
uncertainty. Spatially explicit information on predation risk
can also provide the framework for assessing non-consumptive
effects of predation. Satellite telemetry data have provided
evidence of non-consumptive effects of predators on prey species
in open ocean systems including shifting movement (Westdal
et al., 2017; Matthews et al., 2020) and habitat use patterns
(Ferguson et al., 2010). For example, previous work has found
that narwhal will shift habitat use closer to shore (Breed
et al., 2017) and bowhead whales will select for heavy sea ice
(Matthews et al., 2020) when killer whales are present. Studies
that link these observations with data showing consumptive
or direct mortality (e.g. kill sites) effects of predators on prey
are lacking and can further enhance our understanding of how
biophysical habitat characteristics influence predation success
and resource trade-offs.
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